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c Facultad de Matemática y Computación, Universidad de La Habana, San Lázaro y L, Vedado, Havana 4, CP-10400, Cuba

Received 12 January 2005
Available online 14 April 2005
Abstract

A binary composite is studied here, where the electroelastic properties of the constituent materials belong to the crys-
tal class 622. A square arrangement of long continuous circular cylinders, the fiber phase, embedded in a homogeneous
medium is consider here. The composite is in a state of antiplane shear piezoelectricity, that is, a coupled state of out-of-
plane mechanical displacement and in-plane electric field, which is characterized by three electroelastic parameters: lon-
gitudinal shear modulus, shear stress piezoelectric coefficient and transverse dielectric constant. Our interest here lies in
the determination of its effective properties. They are derived by means of the method of two spatial scales. Closed-form
expressions are obtained for them. Only one of the four local (or canonical) problems that arise is needed. Two prop-
erties are thus found. The Milgrom–Shtrikman compatibility relation is used to fix the remaining one. The local prob-
lem is solved using potential methods of a complex variable. The solution involves doubly periodic Weierstrass elliptic
and related functions. The final formulae for the overall properties show explicitly the dependence on (i) the properties
of the phases, (ii) the radius of the cylindrical fiber and (iii) the lattice sums associated with the square array. The shear
modulus is shown to depend explicitly not only on the rigidity of the phases but also on their piezoelectric and dielectric
coefficients. Some natural organic substances have the symmetry 622 like collagen. Recently Silva et al. measured its
electroelastic properties. Their data is used to show some numerical results of the derived formulae as a function of
the fiber volumetric fraction.
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1. Introduction

Composites, whether natural or man-made, span a wide variety of geometries (particulates, fibers, lam-
inates, etc.). Its composition is guided, and even tailored, by the application at hand (Hull and Clyne, 2000;
Kelly and Sweben, 2000). One example widely studied among many others considers long parallel contin-
uous fibers of one material embedded in a binding material. When the lateral diameter of a fiber is small
compared with the size of the whole, an important matter arises which belongs to the subject of microm-
echanics. Is it possible to predict the overall properties in the bulk once the constituent properties, volume
fractions and architecture are known? Quite a number of analytical and numerical techniques have been
used to answer this question. References to these can be found in the texbooks mentioned in Rodrı́guez-
Ramos et al. (2001) and Guinovart-Dı́az et al. (2001). In particular, many applications to other fields using
the asymptotic homogenization method are referred to in these papers. In general the application of the
latter method to a periodic medium leads necessarily to the solution of several so-called local (or canonical)
problems which take place on a periodic unit cell. These are usually solved using numerical methods (e.g.,
Galka et al., 1996; Pastor, 1997; Andrianov et al., 2002). However, for a two-phase composite exact closed-
form effective expressions have been found for certain anisotropic materials and arrays of circular cylinders:
square (Rodrı́guez-Ramos et al., 2001; Bravo-Castillero et al., 2001; Valdiviezo-Mijangos et al., 2002b) and
hexagonal (Guinovart-Dı́az et al., 2001; Sabina et al., 2001; Valdiviezo-Mijangos et al., 2002a) arrays and
materials with 6 mm and cubic symmetry. Recently, Silva et al. (2001) have measured three electroelastic
properties of two films: anionic collagen and a composite collagen-hydroxiapatite (HA). The purpose of
their research is to look for new biomaterials having the potential of guided osteogenesis. It is interesting
to note that the three measured properties correspond to the 622 crystal class, which together with class 6 is
common in some natural organic substances (Fukada, 1984; Ikeda, 1990). Both collagen and HA are nat-
ural constituents of bone and have good qualities for use in medical applications (Thompson and Hench,
2000). This combination is also under study for bone graft devices (Mythili et al., 2000) in which case the
microstructure is rather complex, that of two interpenetrating phases. A simple model of a fiber-reinforced
composite with natural materials showing this kind of piezoelectricity can be theoretically studied using the
asymptotic homogenization method to calculate overall properties. The data on the electroelastic properties
of solids of classes 6 and 622 is, however, not complete. Due to the cylindrical symmetry of the array, it
turns out that each plane perpendicular to the axis of symmetry (material and geometric) behaves in the
same way and only requires the knowledge of the properties measured by Silva et al. (2001). Thus, it is pro-
posed to address the problem of the prediction of the overall properties for a square array of a binary com-
posite with constituents properties of the 622 symmetry.

The paper is organized as follows. Section 2 introduces the constitutive relations, the equilibrium equa-
tions and the interface conditions between two materials of class 622. In the next section, the method of
homogenization is briefly mentioned. The calculation of the overall properties are dependent on the solu-
tion of certain local problems. One such problem, the 13L one, is stated and its relation to some of the
properties is shown. Section 4 uses potential theory and the properties of doubly periodic elliptic func-
tions to construct the solution of the local problem stated in Section 3. The closed-form formulae for
the overall properties are derived in Section 4. A numerical example is shown in Section 5. Finally, Sec-
tion 6 has some concluding remarks. The paper ends with two appendices A, B which collect some
formulae.

Use is made of general formulae presented in Bravo-Castillero et al. (2001); references to equations and
sections from that source are given the prefix II.
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2. Statement of the problem

A two-phase periodic composite is considered here which consists of a square array of identical parallel
circular cylinders embedded in a homogeneous medium. The cylinders are infinitely long (Fig. 1). The mate-
rial electroelastic properties of each phase belong to the class 622, where the axes of material and geometric
symmetry are parallel to the 3 direction. The governing electroelastic equations for this kind of materials
are the Navier equations of linear elasticity and Maxwell�s quasistatic equations for the mechanical dis-
placement u = (u,v,w) and electric field E = (E1,E2,E3). They become coupled equations for u and E

through the constitutive relations of the medium. In a two-dimensional situation, like in the considered
geometry here, it is well-known that the equations of elasticity (with no piezoelectricity present) for, say,
two isotropic solids uncouple into two independent systems under suitable boundary conditions. Namely,
the familiar plane- and antiplane-strain deformation states. The in-plane displacements components
u(x1,x2), v(x1,x2) only appear in the former state. In the later one the remaining out-of-plane displacement
w(x1,x2) is present (see, e.g., Nemat-Nasser and Hori, 1999, p. 82). A similar situation arises when there is
piezoelectric coupling, i.e., for the full electroelastic equations Benveniste (1995) has shown that, under cer-
tain loading conditions at the (cylindrical) external boundary of solids of class 2, the electroelastic equa-
tions uncouple also into two separate problems. Although it is not mentioned explicitly there, the same
uncoupling occurs for solids of the class 622 considered here. One of them, involves u, v, E3, i.e., it is a state
of in-plane mechanical deformation and out-of-plane electric field. The other state, which is of particular
interest here, is characterized by an out-of-plane mechanical displacement w and an in-plane electric field
E1, E2. The main aim of this paper is the determination of effective properties using the homogenization
method as in Bravo-Castillero et al. (2001). In that paper the same cylindrical geometry is considered except
that the phases are solids of the class 6mm. The above-mentioned uncoupling occurs, but it turns out that
the electromechanical variables u, v, E3 satisfy the same equations as the class 622. It is not so for the other
electromechanical state. Thus it is only necessary to solve for the remaining one relating w, E1, E2. In this
case the relevant constitutive relations are
Fig. 1.
lines, t
r23 ¼ 2p�23 � s0E1; r13 ¼ 2p�13 þ s0E2; D1 ¼ 2s0�23 þ tE1; D2 ¼ �2s0�13 þ tE2; ð2:1Þ
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Binary composite: cross-section of a square array of circular cylinders of radius R. At the lower right bottom without the azure
he coordinate system used is shown on the periodic unit cell S(=S1 [ S2); the common interface being denoted C.
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where r13, r23 are stress components; �13, �23 those of strain; D1, D2 in-plane electric displacement compo-
nents; only three material properties appear here, namely, the longitudinal shear modulus p, the transverse
permittivity constant t and the shear stress piezoelectric coefficient s 0. In fact, this material has only one
piezoelectric modulus (Nye, 1998).

The equilibrium equations in the composite are
r13;1 þ r23;2 ¼ f ; D1;1 þ D2;2 ¼ 0; ð2:2Þ

where the comma notation is understood to denote differentiation with respect to xi, i.e., D1,1 � oD1/ox1
and f is the body force (Ikeda, 1990).

Let p1, s01, t1 be the material properties, and u1 the electric potential in the matrix. Similarly a subindex 2
is used for variables associated with the fiber. Note the differential relations
2�13 ¼ w;1; 2�23 ¼ w;2; E1 ¼ �u;1; E2 ¼ �u;2. ð2:3Þ
The two phases are assumed to be in perfect contact along the interface of each cylinder which is denoted
by C (Fig. 1) and satisfy the conditions of continuity of displacement, potential, traction and normal com-
ponent of electric displacement. Thus
kwk ¼ 0 on C; kuk ¼ 0 on C; kr13n1 þ r23n2k ¼ 0 on C; kD1n1 þ D2n2k ¼ 0 on C;

ð2:4Þ

where n = (n1,n2) is the unit normal vector to C, and the double bar notation is used to denote the jump of
the relevant function across C taken from the matrix to the fiber.
3. The method of solution

Now let l be the distance between the centers of two neighbouring cylinders and L the diameter of the
composite. Then, when � = l/L is a very small number, it is possible to distinguish two spatial scales, one is
x, the slow variable, and the other is y = x/�, the fast variable. The boundary value problem (2.1)–(2.4) in
the composite with Benveniste�s boundary conditions can be solved asymptotically posing the ansatz
wðxÞ ¼ w0ðx; yÞ þ �w1ðx; yÞ þOð�2Þ; uðxÞ ¼ u0ðx; yÞ þ �u1ðx; yÞ þOð�2Þ ð3:1Þ

in (2.1)–(2.4) using the method of two scales. The functions w0, u0, w1, u1 are found to satisfy certain dif-
ferential equations related to the original system in a unit cell (see Fig. 1) with periodic conditions. It is a
well-known derivation whose details can be found elsewhere (e.g., Parton and Kudryavtsev, 1993) and is
omitted. Of a greater interest here are the so-called local (or canonical) problems associated with the cor-
rection terms w1,u1 to the mean variations w0,u0 since they appear in the formulae for the effective prop-
erties. There are four of such problems, which are referred as 13L, 23L, 1L and 2L. A preindex is used to
distinguish similar constants and functions such as displacements and potentials, which appear below.
Due to the linearity of the equations (2.1)–(2.4), the corrections terms w1, u1 can be obtained as a linear
combination of such displacements and potentials. This, however, will not be done here, since the main
objective of this paper is the characterization of the effective properties p, s 0 and t. Explicit relationships
for all of them are collected in Appendix A. There are several alternatives for each property: two for p

and t and four for s 0. As a start, one of them is chosen. It requires the solution of a local problem, say,

13L. This means that is necessary to consider, (A.1a,c), viz.,
p ¼ pv þ hpM ;1 � s0N ;2i; s0 ¼ s0v þ hs0M ;1 þ tN ;2i; ð3:2Þ
where the preindex 13 is now dropped since no further confusion can arise in the rest of the paper. The

displacement M(!) and potential N(!) (! = 1,2) are the solution of the corresponding two indices (13) local
problem, taken from equations (II, 2.4–5), viz.,
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DM ð� Þ ¼ 0 in S� ; DN ð� Þ ¼ 0 in S� ; kM ð� Þk ¼ 0 on C; kN ð� Þk ¼ 0 on C;

kðp�M
ð� Þ
;1 � s0�N

ð� Þ
;2 Þn1 þ ðp�M

ð� Þ
;2 þ s0�N

ð� Þ
;1 Þn2k ¼ �kp�kn1 on C;

kðs0�M
ð� Þ
;2 � t�N

ð� Þ
;1 Þn1 � ðs0�M

ð� Þ
;1 þ t�N

ð� Þ
;2 Þn2k ¼ ks0�kn2 on C; hMi ¼ 0; hNi ¼ 0; ð3:3a–hÞ
where D is the two-dimensional Laplacian. Thus M(!) and N(!) are sought such that they are doubly peri-
odic harmonic functions of the complex variable z = y1 + iy2 in the square unit cell S(=S1 [ S2 and
S1 \ S2 = ;) of periods x1 = 1, x2 = i. A limiting case is noted here which is useful below. When the pie-
zoelectric coefficients s01, s

0
2 vanish, there is no electroelastic coupling. Hence the equations (3.3a–h) uncou-

ple in two independent sets. Those for M(!) correspond to the antiplane elastic problem 13L (II, Section
3.2). The remaining equations for N(!) are homogeneous implying either a null potential or the existence
of resonances (McPhedran and McKenzie, 1980) for the dielectric problem. However, the non-resonant
contribution to the correction term u1 in (3.1) comes from the 1L or 2L local problem, i.e., the effective per-
mittivity follows from Eqs. (B.2g,h), see also Table 1.

Eqs. (3.2) are easily transformed applying Green�s theorem to the area integrals. The doubly periodic
boundary conditions on S and the continuity of displacement and potential on C leads to
p ¼ pv � kp�k
Z
C
M ð2Þ dy2 � ks0�k

Z
C
N ð2Þ dy1; s0 ¼ s0v � ks0�k

Z
C
M ð2Þ dy2 þ kt�k

Z
C
N ð2Þ dy1. ð3:4Þ
The same procedure is applied to all of (A.1a–h). The results are collected in Appendix B.
4. Solution of the local problem 13L

The methods of potential theory are used to solve (3.3a–h). Doubly periodic harmonic functions are to
be found in terms of the following expansions of harmonic functions:
M ð1ÞðzÞ ¼ Re �pa1zþ
X1o

k¼1

ak
fðk�1ÞðzÞ
ðk � 1Þ!

( )
;

N ð1ÞðzÞ ¼ Im pb1zþ
X1o

k¼1

bk
fðk�1ÞðzÞ
ðk � 1Þ!

( )
;

M ð2ÞðzÞ ¼ Re
X1o

k¼1

ckzk
( )

;

N ð2ÞðzÞ ¼ Im
X1o

k¼1

dkzk
( )

; ð4:1a–dÞ
where ak, bk, ck, dk, are real undetermined coefficients and f(z) is the quasi-periodic Weierstrass Zeta func-
tion of periods x1 and x2, f

(k)(z) is its kth derivative, which are doubly periodic of periods x1, x2. The
1
problems, functions and jump conditions

m 13L 23L 1L 2L

cement 13M 23M 1P 2P

ial 13N 23N 1Q 2Q

3.3e) �jjp!jjn1 �jjp!jjn2 �ks0� kn2 ks0� kn1
3.3f) ks0� kn2 �ks0� kn1 jjt!jjn1 jjt!jjn2
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superindex o next to the sum symbol means that k runs only over odd integers so that each term in (4.1a–d)
has the same antisymmetry property as M(!) and N(!), namely, M(!)(�z) = �M(!)(z), N(!)(�z) = �N(!)(z).
In addition, M(!)(N(!)) is an even (odd) function of h, where z = reih; this follows, say, by examination of
the right-hand side of (3.3e,f). The first term in each expansion (4.1a,b) arises due to the quasi-periodicity
property of the f(z), which is
fðzþ xaÞ � fðzÞ ¼ da; a ¼ 1; 2; ð4:2Þ

where x1 = 1, x2 = i, d1 = p, d2 = �ip.

The line integrals in (3.4) and the assumed expansions (4.1c,d) produce a very simple result as a conse-
quence of the orthogonality of the trigonometric functions, namely,
p ¼ pv � kp�kc1 � ks0�kd1

� �
pR2; s0 ¼ s0v � ks0�kc1 þ kt�kd1

� �
pR2. ð4:3Þ
Once p and s 0 are found it remains to seek t to characterize all the sought overall properties.
The method developed here is a possible way, which requires the solution of another local problem (see,

(A.1a–h)). Another one, simpler, consists in the application of the compatibility condition of Milgrom and
Shtrikman (1989).

The Laurent expansion of (4.1a,b) about the origin is easily found to be
M ð1ÞðzÞ ¼ Re
X1o

l¼1

alz�l �
X1o

k¼1

ak
X1o

l¼1

kgklz
l

( )
;

N ð1ÞðzÞ ¼ Im
X1o

l¼1

blz�l �
X1o

k¼1

bk
X1o

l¼1

kg0klz
l

( )
; ð4:4Þ
where
g11 ¼ �g011 ¼ p; gkl ¼ g0kl ¼
ðk þ l� 1Þ!

k!l!
Skþl for k; l 6¼ 1; ð4:5Þ
the definitions of gkl, g0kl here are different from those used in Rodrı́guez-Ramos et al. (2001); the lattice
sums Sk are defined by
Sk ¼
X
m;n

0ðmx1 þ nx2Þ�k k P 3; ð4:6Þ
where the prime means that the summation over all the integers does not include the term m = n = 0. The
series are absolutely and uniformly convergent (Markushevich, 1970, p. 335). The interface conditions
(3.3c–f) are now used to establish relationships among the coefficients in (4.1a), (4.2)–(4.4). These are
Rlcl ¼ R�lal �
X1o

k¼1

kgklR
lak;

Rldl ¼ �R�lbl �
X1o

k¼1

kg0klR
lbk;

� kp�kRd1l ¼ �ðp1 þ p2ÞR�lal � kp�k
X1o

k¼1

kgklR
lak þ ks0�k R�lbl þ

X1o

k¼1

kg0klR
lbk

 !
;

� ks0�kRd1l ¼ ks0�k R�lal �
X1o

k¼1

kgklR
lak

 !
þ ðt1 þ t2ÞR�lbl � kt�k

X1o

k¼1

kg0klR
lbk; ð4:7a–dÞ
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for l = 1,3,5, . . . Once the multipole coefficients, the a�s and b�s, are found from (4.7c,d) the remaining ones
are obtained from (4.7a,b).

A closer look at the system (4.7a–d) for l = 1 gives the relations
Rc1 ¼ R�1a1 �
X1o

k¼1

kgk1Rak;

Rd1 ¼ �R�1b1 �
X1o

k¼1

kg0k1Rbk;

� kp�kR ¼ �ðp1 þ p2ÞR�1a1 � kp�k
X1o

k¼1

kgk1Rak þ ks0�k R�1b1 þ
X1o

k¼1

kg0k1Rbk

 !
;

� ks0�kR ¼ ks0�k R�1a1 �
X1o

k¼1

kgk1Rak

 !
þ ðt1 þ t2ÞR�1b1 � kt�k

X1o

k¼1

kg0k1Rbk: ð4:8Þ
The two different summations in (4.8) can be eliminated to yield simpler connections between c1, d1 and
a1, b1. These are
kp�kc1 � ks0�kd1 ¼ 2p1R
�2a1 � kp�k; ks0�kc1 þ kt�kd1 ¼ �2t1R�2b1 � ks�k. ð4:9Þ
With these results, (4.3) become
p ¼ p1ð1� 2pa1Þ; s0 ¼ s01 þ 2pt1b1 ð4:10a;bÞ

in which only the residue of M(1)(N(1)) contributes toward p(s 0). The expression for p in (4.10a) is the same
as in the pure elastic case (II, 3.11). The coefficient a1, however, is different in both cases. Thus, expressions
for a1, b1 are now sought.

It is convenient to introduce new scaled variables (McPhedran and McKenzie, 1980)
a0l ¼
ffiffi
l

p
R�lal; b0l ¼

ffiffi
l

p
R�lbl; c0l ¼

ffiffi
l

p
Rlcl; d 0

l ¼
ffiffi
l

p
Rldl ð4:11Þ
in (4.7a–d), so that they become
I � Wð ÞD1 ¼ D3; I þ W 0ð ÞD2 ¼ �D4; uð1Þ
11 D1 þ uð1Þ

12 D2 þ uð2Þ
11 WD1 þ uð2Þ

12 WD2 ¼ U 1;

uð1Þ
21 D1 þ uð1Þ

22 D2 þ uð2Þ
21 W

0D1 þ uð2Þ
22 W

0D2 ¼ U 2; ð4:12a–dÞ
where I is the identity matrix, the components of the matrices W and W 0 are for k = l = 1
w11 ¼ pR2 ¼ �w0
11; ð4:13Þ
and otherwise
wkl ¼ w0
kl ¼

ðk þ l� 1Þ!
ðk � 1Þ!ðl� 1Þ!

Rkþlffiffiffi
k

p ffiffi
l

p Skþl; ð4:14Þ
the matricesW,W 0 are real, symmetric and bounded; the introduction ofW 0 although identical toW except
for w0

11 is quite useful;
D1 ¼ a01 a03 a05 . . .ð ÞT; D2 ¼ b01 b03 b05 . . .
� �T

;

D3 ¼ c01 c03 c05 . . .ð ÞT; D4 ¼ d 0
1 d 0

3 d 0
5 . . .

� �T
;

ð4:15Þ
all the components of the vectors U 1, U 2 are zero except the first one, which are Rvp, Rv0t respectively, where
vp ¼
kp�k
p1 þ p2

; v0t ¼
ks0�k
t1 þ t2

; v0p ¼
ks0�k

p1 þ p2
; vt ¼

kt�k
t1 þ t2

; ð4:16Þ
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the last two definitions are conveniently introduced here; it remains to define the 2 · 2 non-symmetric
matrices U(1), U(2) whose components appear in (4.12c,d). They are
Uð1Þ ¼
1 �v0p

�v0t �1

� �
; Uð2Þ ¼

vp �v0p
v0t vt

� �
. ð4:17Þ
Therefore Eqs. (4.12c,d) are transformed into
u11D1 þ u12D2 þ WD1 ¼ U 1; u21D1 þ u22D2 þ W 0D2 ¼ 0; ð4:18a;bÞ

where only the first component of U1 is non-zero, it is equal to R and U�1 is the 2 · 2 non-symmetric matrix
U�1 ¼
u11 u12

u21 u22

� �
¼ ½Uð2Þ��1Uð1Þ ¼ 1

D

vt � v0pv
0
t �v0pð1þ vtÞ

�v0tð1þ vpÞ �vp þ v0pv
0
t

" #
; D ¼ vpvt þ v0pv

0
t. ð4:19Þ
When there is no coupling s01 ¼ s02 ¼ 0 or v0p ¼ v0t ¼ 0, then
U�1 ¼ diagðv�1
p ;�v�1

t Þ. ð4:20Þ

The system (4.18a,b) uncouples into
ðv�1
p I þ W ÞD1 ¼ U 1; ð�v�1

t I þ W 0ÞD2 ¼ 0. ð4:21a; bÞ
The first system (4.21a) agrees with the result, Eq. (7), of McPhedran and McKenzie (1980) derived in the
context of dielectrics using Rayleigh�s method (1892). The matrix W plays an important role there as it is
the case here with W and W 0. It must be mentioned that in the analysis carried out here the lattice sum S2

does not appear at all unlike in McPhedran and McKenzie (1980). Here the contribution of p in w11 and w0
11

is due to the doubly periodicity of the functions in (4.1a,b). Although using a different notation, (4.21a) is
also given as Eq. (3.9) of Rodrı́guez-Ramos et al. (2001) for the elasticity problem. The other system (4.21b)
is homogeneous, so D2 = 0 if v�1

t is not an eigenvalue of W 0. Otherwise there appears to be resonant solu-
tions. The analysis of these is beyond the scope of the present paper.

The system of equations (4.18a,b) has a useful particular structure which is due to the periodicity of the
square array. The components wkl ofW vanish whenever k + l is not a multiple of four. The system (4.18a,b)
can be reorganized in three systems considering (i) the first equation in each system (4.18a,b), (ii) the set of
equation with Greek index a = 3,7,11, . . . and (iii) the set with Latin index i = 5,9,13, . . . From this point
onwards, the use of Greek and Latin as subindices runs as defined. The system can be written as follows
ðU�1 þWÞA1 þVTDðaÞ ¼ B; F �1DðaÞ þ GVþWDðiÞ ¼ 0; F �1DðiÞ þWTDðaÞ ¼ 0; ð4:22a–cÞ

where the 2 · 1 vectors AJ, B and 2 · 2 matrices W, I2 are
AJ ¼ a0J b0J
� �T

for J ¼ 1; 3; 5; . . . ; B ¼ R 0ð ÞT; W ¼
w11 0

0 w0
11

� �
; I2 ¼

1 0

0 1

� �
;

ð4:23Þ

the vectors partitioned in blocks 2 · 1D(a) and DðiÞ; V in blocks 2 · 2 are:
DðaÞ ¼ A3 A7 A11 . . .ð ÞT; DðiÞ ¼ A5 A9 A13 . . .ð ÞT; VT ¼ w13I2 w17I2 w1;11I2 . . .ð Þ;
ð4:24Þ
the square matrices partitioned in 2 · 2 blocks W, F and 1 · 2 blocks G are
W ¼
w35I2 w39I2 � � �
w75I2 w79I2 � � �
..
. ..

.

2
664

3
775; F ¼

U 0 � � �
0 U � � �
..
. ..

.

2
64

3
75; G ¼

A1 0 � � �
0 A1 � � �
..
. ..

.

0
BB@

1
CCA. ð4:25Þ
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The system of Eqs. (4.22a–c) in the unknowns A1, D
(a) and D(i) is such that A1 can be found explicitly in

the following way. The D(i) found in (4.22c) is substituted into (4.22b). Here the system of equations is
solved for D(a) and then put in (4.22a), which leaves an equation for A1. This method was used by Pobedrya
(1984), who showed several examples of alike systems which can be solved for the lowest order coefficient in
the Laurent expansion. Thus
A1 ¼ I2 þ UW� U2VTM�1V
� 	�1

UB; ð4:26Þ
where
M ¼ I � F 2WWT ð4:27Þ

and its components are 2 · 2 matrices
mab ¼ I2 � U2
X1
i¼5

waiwib. ð4:28Þ
When s01 ¼ s02 ¼ 0 (or v0p ¼ v0t ¼ 0), the components of A1 in (4.26) become b1 = 0 and
a1 ¼ vpR
2 1þ vpw11 � v2pV

TM�1V
h i�1

; ð4:29Þ
where the components of M and V are given now without block partitions,
mab ¼ dab � v2p
X1
i¼5

waiwib; va ¼ w1a. ð4:30Þ
Expression (4.29) agrees with the corresponding one in (II, 3.13) derived for the antiplane elastic case,
although the notation and some definitions are different. Note that the matrix U in (4.26) plays a similar
role as the scalar vp in (4.29). Both contain information about material properties of the phases. It is also
interesting to see that w11 = pR2 = V2, the fiber volume fraction. Now the effective properties p, s 0 can be
found using (4.10a,b). They depend explicitly on (i) the properties of the phases, (ii) the radius of the cylin-
drical fiber and (iii) the lattice sums associated with the square array. In Appendix B formulae are given for
the effective properties in terms of the a1 and b1 coefficients which correspond to all the local problems.

The other three local problems are very much alike (3.3a–h). With reference to Table 1, the associated
equations to 23L can be obtained from (3.3a–h). One must substitute the elements of the second column
(those of the 23L problem) instead of the elements of the first one (corresponding to 13L); and so on for
the remaining 1L and 2L.

Because of the linearity of the canonical equations and the same angular dependence on the right-hand
side of (3.3e,f), it turns out that the solution of the two local problems 13L (23L) and 2L (1L) are closely
related. By keeping track of the coefficients in the right-hand side of (3.3e,f), one can get the solutions
of the other related problem, is therefore only necessary to solve two local problems. Or only one, if use
is made of the universal relation among the three properties.
5. Numerical example

The constituent properties for the calculations that follow were taken from Silva et al. (2001) in their
study of piezoelectric properties of films of biomaterials of the class 622. Here it is assumed that the mea-
sured properties also refer to the bulk properties. After some minor calculations and correction of units, the
data used are: for collagen, which is taken as the matrix medium, p1 = 1.4 GPa, t1/�0 = 2.825
(�0 = 8.854 · 10�12 C2/N m2 is the permittivity of free space), d1 = 0.062 pC/N; the fiber material is
a collagen-hydroxyapatite (HA) composite, whose properties are p2 = 2.697 GPa, t2/�0 = 2.509,
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d2 = 0.041 pC/N, where d1, d2 are the shear strain piezoelectric coefficients. They are related to the shear
stress piezoelectric ones used in the formulation above through the equation
s0 ¼ dp ð5:1Þ

(Ikeda, 1990, p. 17).

The infinite vectors and matrix in (4.26) and (4.27), which give the coefficients a1 and b1 of the overall
properties in (4.10a,b), are truncated to a finite order, which is not a very large number to achieve enough
accuracy. The results of the calculation are displayed in Fig. 2, which shows the overall properties d, t/�0
and p as a function of the fiber volume (area) fraction V2 up to the percolation limit when cylinders get
in contact. Each property shows a simple monotonic behaviour with V2.
6. Concluding remarks

The explicit formulae that were obtained for the overall properties p, s 0, (4.10a,b) and its companion
equation (4.26) is typical of the kind of results that can be derived using the methodology of this paper.
The formulae show the dependence on the properties of the phases through U and the coefficients in
(4.10a,b). The radius R of the cylinder, which is a number not greater than 1/2, appears in B = (R 0)T

and wlk, being proportional to Rk+l, is a very small number for large k + l. The terms w11 ¼ pR2 ¼ �w0
11

in W are interesting because the factor p that arises there is the necessary condition of doubly periodicity
of the displacement M(1) and potential N(1). It does not involve the calculation of the particular lattice sum
S2, that requires summation over a ‘‘needle’’-shaped region, in similar problems which involve transport
properties of regular arrays of cylinders using Rayleigh�s method (1892) (Perrins et al., 1979). Note that
w11 = V2 is the volume fraction occupied by the fiber. The square array induces its particular geometric fea-
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ture by means of the lattice sums which appear in wlk besides the early consideration of summations over
odd indices in (4.1a–d) (the square symmetry).

The formulae that were found for the effective properties may be useful as a benchmark to check numer-
ical codes and experimental data.
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Appendix A. Overall properties p, s 0, t

From the general formulae in (II, 2.12), it follows that
p ¼ pv þ hp 13M ;1 � s013N ;2i;
¼ pv þ hp 23M ;2 � s023N ;1i;

s0 ¼ s0v þ hs013M ;1 þ t 13N ;2i;
¼ s0v þ hs023M ;2 þ t 23N ;1i;
¼ s0v þ hp 1P ;2 þ s01Q;1i;
¼ s0v þ hp 2P ;1 þ s02Q;2i;

t ¼ tv þ h�s01P ;2 þ t 1Q;1i;
¼ tv þ hs02P ;1 þ t 2Q;2i;

ðA:1a–hÞ
where
pv ¼ V 1p1 þ V 2p2;

s0v ¼ V 1s01 þ V 2s02;

tv ¼ V 1t1 þ V 2t2;

V 1 þ V 2 ¼ 1; V 2 ¼ pR2;

hF ðyÞi ¼
Z
S
F ðyÞdy.

ðA:2Þ
Table 1 describes the functions which appear in (A.1a–h)
Appendix B Z Z

p ¼ pv � kp�k

C
13M ð2Þ dy2 � ks0�k

C
13N ð2Þ dy1;

¼ pv þ kp�k
Z
C

23M ð2Þ dy1 þ ks0�k
Z
C

23N ð2Þ dy2;
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s0 ¼ s0v � ks0�k
Z
C

13M ð2Þdy2 þ kt�k
Z
C

13N ð2Þ dy1;

¼ s0v þ ks0�k
Z
C

23M ð2Þdy1 � kt�k
Z
C

23N ð2Þ dy2;

¼ s0v þ kp�k
Z
C

1P ð2Þ dy1 þ ks0�k
Z
C

1Q
ð2Þ dy2;

¼ s0v � kp�k
Z
C

2P ð2Þ dy2 þ ks0�k
Z
C

2Q
ð2Þ dy1;

t ¼ tv � ks0�k
Z
C

1P ð2Þ dy1 þ kt�k
Z
C

1Q
ð2Þ dy2;

¼ tv � ks0�k
Z
C

2P ð2Þ dy2 þ kt�k
Z
C

2Q
ð2Þ dy1. ðB:1Þ
Final formulae for effective coefficients, in terms of the residue of solutions for each local problem
p ¼ p1ð1� 2p 13a1Þ;
¼ p1ð1þ 2p 23a1Þ;

s0 ¼ s01 þ 2pt1 13b1;

¼ s01 þ 2pt1 23b1;

¼ s01 þ 2pp1 1a1;

¼ s01 þ 2pp1 2a1;

t ¼ t1 1� 2p 1b1ð Þ;
¼ t1ð1þ 2p 2b1Þ. ðB:2a–hÞ
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E. López-López et al. / International Journal of Solids and Structures 42 (2005) 5765–5777 5777
Nemat-Nasser, S., Hori, M., 1999. Micromechanics: Overall Properties of Heterogeneous Materials, second rev. ed. Elsevier,
Amsterdam.

Nye, J.F., 1998. Physical Properties of Crystals. Clarendon Press, Oxford.
Parton, V.Z., Kudryavtsev, B.A., 1993. Engineering Mechanics of Composite Structures. CRC Press, Boca Raton.
Pastor, J., 1997. Homogenization of linear piezoelectric media. Mech. Res. Commun. 24, 145–150.
Perrins, W.T., McKenzie, D.R., McPhedran, R.C., 1979. Transport properties of regular arrays of cylinders. Proc. Roy. Soc. Lond. A

369, 207–225.
Pobedrya, B.E., 1984. Mechanics of Composite Materials. Moscow State University Press, Moscow, in Russian.
Rayleigh, L., 1892. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Phil. Mag. 34, 481–

501.
Rodrı́guez-Ramos, R., Sabina, F.J., Guinovart-Dı́az, R., Bravo-Castillero, J., 2001. Closed-form expressions for the effective

coefficients of a fiber-reinforced composite with transversely isotropic constituents—I. Elastic and square symmetry. Mech. Mater.
33, 223–235.

Sabina, F.J., Rodrı́guez-Ramos, R., Bravo-Castillero, J., Guinovart-Dı́az, R., 2001. Closed-form expressions for the effective
coefficients of a fibre-reinforced composite with transversely isotropic constituents—II: Piezoelectric and hexagonal symmetry. J.
Mech. Phys. Solids 49, 1463–1479.
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